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A compendium of 32,277 metagenome-
assembled genomes and over 80 million
genes from the early-life human gut
microbiome

Shuqin Zeng1, Dhrati Patangia2,3,4, Alexandre Almeida 5,6, Zhemin Zhou7,
Dezhi Mu 1, R. Paul Ross2,4, Catherine Stanton2,3 & Shaopu Wang 1

Age-specific reference genomes of the human gut microbiome can provide
higher resolution for metagenomic analyses including taxonomic classifica-
tion, strain-level genomic investigation and functional characterization. We
present the Early-Life Gut Genomes (ELGG) catalog with 32,277 genomes
representing 2172 species from 6122 fecal metagenomes collected from chil-
dren under 3 years old spanning delivery mode, gestational age, feeding pat-
tern, and geography. The ELGG substantially expanded the phylogenetic
diversity by 38% over the isolate microbial genomes, and the genomic land-
scape of the early-life microbiome by increasing recruitment of metagenomic
reads to 82.8%. More than 60% of the ELGG species lack an isolate repre-
sentative. The conspecific genomes of the most abundant species from chil-
dren differed in gene diversity and functions compared to adults. The ELGG
genomes encodeover 80millionprotein sequences, forming the Early-LifeGut
Proteins (ELGP) catalog with over four million protein clusters, 29.5% of which
lacked functional annotations. The ELGG and ELGP references provided new
insights into the early-life human gut microbiome and will facilitate studies to
understand the development and mechanisms of disturbances of the human
gut microbiome in early life.

The human gut microbiome—the vast microbial ecosystem present in
the gastrointestinal tract—has been suggested to play diverse and
crucial roles in host health and various diseases throughout the course
of life1,2. The acquisition and development of the gut microbiome in
early life have long-lasting effects on the structure and function of this
microbial community later in life3. Despite the increasing number of
studies providing substantial insights into the early-life gut
microbiome4–9, extensive genome-resolved metagenomic analyses of

the early-life gut microbiome remain scarce. Having high-quality and
extensive reference genomes of the early-life human gut microbiome
can improve the resolution and accuracy of taxonomic and functional
analyses, which is essential for driving future early-life microbiome
studies.

Tremendous efforts have been undertaken to increase the num-
ber of isolate reference genomes from the human gut, such as the
Human Microbiome Project (HMP)10, the Human Gastrointestinal
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Bacteria Genome Collection (HGG)11, and Culturable Genome Refer-
ence (CGR)12, however, the currently available reference genomes
representing thehumangutmicrobiomeare still underrepresented13,14.
Therefore, in parallel to culturing, de novo assembly of shotgun
metagenomic reads and binning into metagenome-assembled gen-
omes (MAGs)—a culturing-independent and reference-free approach—
is thought to be a useful strategy to efficiently discover the potential
microbial diversity that is recalcitrant to the current culturing
approaches in the laboratory. Using MAGs has provided massive
expansion of the tree of life from different environmental niches15–17.
Studies have described some of the dynamic microbiome changes
including taxonomic composition and strain-specific functional
adaptation that occur during early life compared to adulthood18. For
instance, most strains of Bifidobacterium that dominated the gut
microbiome during breastfeeding and dissipated later in life typically
carry high numbers of gene cluster responsible for human milk oli-
gosaccharides (HMOs) utilization; whereas these gene cluster are no
longer present in most bifidobacterial strains after weaning19,20.
Understanding strain-specific differences in gene content and function
also requires representative genomes of the early-life gutmicrobiome.
Previous MAGs studies either analyzed samples exclusively from non-
human gut source21, or from the human gut but with a relatively low
proportion of early-life fecal samples13,15. Additionally, unifying the
human gut genomes including MAGs and isolate genomes has indeed
substantially provided novel insights into the richness, diversity and
cultivability of gut microbiome at various taxonomic and functional
levels22. However, there is currently no large-scale catalog of MAGs
available specifically designed for the gut microbiome in early life.

Therefore, in order to fill this gap, we specifically analyzed 6122
fecal metagenomes from children under the first 3 years of life, and
generated a set of 32,277 MAGs clustered into 2172 species-level
clusters together with 86,678,654 genes representing 4,036,936 gene
clusters, forming the Early-Life Gut Genomes (ELGG) and Proteins
(ELGP) catalogs, respectively. With these comprehensive sequence
collections, we characterized the taxonomic and functional profile of
the early-life gutmicrobiome at the genome level and interrogated the
genomic variations present in the gut microbiome of children asso-
ciated with various clinical factors.

Results
Recovering 32,277microbial genomes from over 6000 early-life
gut metagenomes
To elucidate differences in the early-life gut microbiome at the gen-
ome level and also to expand the genomes for novel human gut
lineages during early life, we employed a combination ofmetagenomic
assembly andbinning on6122multi-country distributedmetagenomes
across four continents from children from birth to three years old
(Fig. 1a; Supplementary Data 1). Compared to the metagenomes that
were used to build the Unified Human Gastrointestinal Genome
(UHGG)22, 1904 metagenomes overlapped. The MAGs were produced
by three different binning tools (i.e., MetaBAT23, MaxBin24, and
CONCOCT25), and then integrated and refined to remove duplicates
and improve the quality of assembled genomes with metaWRAP26

(Fig. 1b). Following this pipeline, a total of 42,054 MAGs were met or
exceeded the medium-quality (≥50% completeness and <10% con-
tamination) based on the “Minimum information about a
metagenome-assembled genome” (MIMAG) standard27. In order to
provide stricter genome quality control, we selected those genomes
having completeness >50% and contamination <5% together with
genome quality score (defined as completeness–5×contamination,
QS) > 50 and free of chimerism (passed by GUNC28), resulting in 32,277
MAGs for subsequent analyses, which we referred to as the ELGG
catalog (Fig. 1c, d; Supplementary Data 2). The median size of the
32,277 MAGs was 2.59 megabases (Mb) (interquartile range,
IQR = 2.08–3.75MB)withN50values between 1.7 kilobases and 2.8Mb.

Among the ELGG catalog, 25,303 MAGs (accounting for 78.4% of the
total dataset) were >90% complete (IQR = 97.3–99.7%) and <5% con-
taminated (IQR =0.00–1.04%), hereafter referred to as ‘near-complete’
genomes. A subset of 4614 MAGs (18.2% of near-complete genomes)
had 5 S, 16 S and 23 S rRNA genes as well as at least 18 of the standard
tRNAs, which can be classified as the ‘high quality’ draft genomes
based on the MIMAG standard27. The relatively low proportion of high
quality recovered MAGs was comparable with previous large-scale
studies of human gut MAGs13,22 due to the typical challenge in the
MAGs assembled frommetagenomes with short reads. The rest of the
ELGG catalog consists of 6974 medium-quality MAGs (>50% com-
pleteness and <5% contamination) (Fig. 1d). The other genome statis-
tics (including contig number and N50, genome depth, and relative
abundance) supported the consistent high quality of near-complete
MAGs compared to medium-quality MAGs even when the latter were
stratified based on the QS at the threshold of 75 (Fig. 1c).

In line with previous studies15,22, the ELGG catalog was further
investigated at the level of strain heterogeneity per genome by using
CMSeq15, which has been suggested to represent a useful measure to
assess genome quality. We found that themedian strain heterogeneity
(proportion of polymorphic positions) of genomes from the ELGG
catalog was 0.005% (IQR =0.001–0.031%; Fig. 1c), which ismuch lower
than the UHGG catalog (0.06%) that included the human gut samples
covering all ages22. The near-complete genomes displayed a lower level
of strain heterogeneity compared to the medium-quality genomes
from the ELGG catalog (Fig. 1c).

A reference protein catalog for the gut microbiome early in life
To expand our understanding of the functions of early-life gut
microbiome, the protein-coding sequences (CDS) for each of the
32,277 MAGs were predicted, resulting in a total of 86,678,654 genes.
This accounted for 54.9% of all genes when taking the unbinned con-
tigs from the 6122metagenomic samples into account. After clustering
the protein sequences at 95% amino acid identity, we obtained
4,036,936 protein clusters, forming the ELGP catalog. Rarefaction
analysis indicated a saturation point was still not reached as the
number of ELGP clusters steadily increased as a functionof the number
ofMAGs included (Fig. 2a), and this pattern was also observedwith the
inclusion of all contigs from 6122 samples (Supplementary Fig. 1a),
which was in line with pervious observations22,29. However, when
removing protein clusters with one protein sequence, the number of
protein clusters approached saturation (Fig. 2a; Supplementary
Fig. 1a). This may suggest that although the microbial genes from
children gut microbiome are still underestimated, the majority of
undiscovered genes are likely to be rare. We further compared our
early-life gene catalog to the large protein database—Unified Human
Gastrointestinal Protein (UHGP)—thatmainly includesmicrobial genes
from the gut of adults and clustered at 95% protein identity
(n = 20,239,340)22. This revealed that 2.9million gene clusters from the
ELGP overlapped with the UHGP catalog, but there was a large pro-
portion (27.3%, n = 1,076,116) from the ELGP not represented in UHGP,
and the total number of proteins from 1,076,116 clusters accounted for
5.4% when taking all 86,678,654 genes into consideration, underlying
the uniqueness of the gut microbiome of children. Among those pro-
tein cluster representatives exclusively from ELGP or UHGP, 27.6%
(n = 296,624) and 30.1% (n = 3,972,835) of representatives were
respectively annotated with a known function, and the rest of the
clusters were either putative or hypothetical proteins (Fig. 2b).
Therefore, our results provide a comprehensive collection of the gut
microbiomeprotein space early in life thatmay serve as a reference for
early-life gut microbiome research.

To better elucidate the functional diversity of the early-life gut
microbiome, we annotated gene functions of the ELGP catalog with
currently availabledatabases, includingClusters ofOrthologousGenes
(COGs), KEGGmodules, level-4 Enzyme Commission categories (ECs),
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Gene Ontologies (GOs), and carbohydrate-active enzymes (CAZy). We
found that a total of 70.5% of genes from the ELGP had a match to at
least one of the databases of COGs (n = 2,844,021 genes across 24
functional categories), ECs (n = 722,946 genes matching 2658
enzymes), KEGG (n = 533,759 genes from 674 modules), GOs
(n = 256,861 genes from 10,461 orthologous groups), and CAZy
(n = 46,392 genes matching 104 families) (Fig. 2c). These results
showed that a median of 88.7% (IQR= 85.9–91.0%) of genes per gen-
ome in the ELGG were annotated, and this rate was lower in genomes
from children at 36months of age (amedian of 89.1% at birth vs. 86.5%
at 36 months; linear model, p <0.0001) (Fig. 2d). Based on the dis-
tribution of COGs functions that matched the largest number of ELGP
genes, the most abundant genes with a known function present in the
ELGPwere involved in transcription, replication/recombination/repair,
cell wall/membrane/envelope biogenesis, and carbohydrate transport
andmetabolism (Fig. 2e). Themost highly represented families of ECs,
KEGG, and GOs were DNA helicase (EC: 3.6.4.12), M00178 (ribosome,
bacteria) and biological process (GO: 0008150). The predominant
glycoside hydrolase family in the ELGP catalog wasGH13, targeting the
hydrolysis of awide range of simple and complex glycans including di-,
oligo-, andpolysaccharides aswell as related substrates, suchas starch,

amylose, and pullulan30 (Supplementary Fig. 1b). We again obser-
ved that the majority of the investigated COGs categories (11/19) were
well-characterized at the first few months, and then gradually
decreased as children aged (i.e., Wilcoxon test, FDR <0.05, when
compared to the annotated gene per genomes at birth to that from
≥36 months) (Fig. 2f).

Early-life MAGs belonging to 2172 species-level clusters
To explore the number of culturable species that were included in the
ELGG catalog, we clustered 32,277 MAGs together with 187,555 isolate
reference genomes from NCBI RefSeq and two human gut culturing
studies11,12. The species-level clusters (SGBs for species-level genome
bins) were computed by using a multistep distance-based approach
with at least 95% average nucleotide identity (ANI) and at least 30%
overlap of alignment fraction (AF) (Methods). A total of 23,307 SGBs
were generated, and theMAGs from the ELGGcatalogweredistributed
into 2172 SGBs (Fig. 3; Supplementary Data 3). Among the 2172 SGBs,
only 774 SGBs contained isolate reference genomes (denoted as cSGBs
for cultured SGBs) containing 86,283 isolate reference genomes and
29,367MAGs. A large proportion of 99.8% (n = 86,132) of 86,238 isolate
reference genomes were near-complete (Supplementary Fig. 2). The

Fig. 1 | The reconstruction of sequence catalog from the early-life human gut
microbiome. a The number and proportion of fecal metagenomes stratified by
clinical features including age, gender, delivery mode, gestational age, and feeding
patterns. b Overview of the computational pipeline to generate ELGG and ELGP
catalogs. cQuality metrics across near-complete (n = 25,303), medium with quality

score (QS) > 75 (n = 2063) and medium with QS≤ 75 (n = 4911) MAGs. CPM copies
per million reads. Boxes show the interquartile range (IQR), with the horizonal line
as the median, the whiskers indicating the range of the data (up to 1.5× IQR), and
points beyond the whiskers as outliers. d Completeness and contamination scores
for each of 32,277 genomes. QS = completeness–5 × contamination.
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other 1398 SGBs contained exclusively 2910 MAGs in total (denoted
uSGBs for uncultured SGBs), indicating that 64.4% of the ELGG SGBs
(9% of total MAGs) lack isolate genomes (Fig. 3a). When compared to
the 4644 representatives of the UHGG using a distance cutoff of 0.05
(95% ANI), 13.4% of ELGG SGBs lacked a match to the UHGG. By
counting the number of MAGs within each SGBs, it was observed that
cSGBs represented the largest clusters, while uSGBs tended to be the
rarest, with 1003 of uSGBs represented by a single genome, which was
in line with the previous studies reconstructing MAGs from the
environmental and host-associated microbiota15,16,22. Interestingly,

cSGBs with >50% MAGs outnumbered uSGBs with 0–50% MAGs for
clusters containing three or more genomes, underscoring the dis-
covery power of large metagenomic cohorts (Fig. 3b). The early-life
humanmicrobial phylogenetic diversity of the 2171 bacterial SGBs was
increased by 38% with the uSGBs, indicating the utility of these gen-
omes to improve the classification of sequences from the early-life
microbiome (Fig. 3c). The median pairwise distances of genomes
within SGBswas 0.020 (IQR =0.014–0.029) when including references
and MAGs and 0.020 (IQR =0.013–0.029) when only consider-
ing MAGs.
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Taxonomic landscape of the gut microbiome early in life
We further taxonomically annotated each species representative using
the Genome Taxonomy Database Toolkit (GTDB-Tk) based on the
GTDB database consisting of >311,000 bacterial and >6000 archaeal
genomes that are comprised of isolate genomes, MAGs, and single-
amplified genomes.We found that the ELGG catalog covered 14 known
phyla (13 for bacteria and 1 for archaea), 18 known classes (17 for
bacteria and 1 for archaea), 55 known orders (54 for bacteria and 1 for

archaea), and 382 known genera (381 for bacteria and 1 for archaea)
(Fig. 3d; Supplementary Data 3). Additionally, there were still 214
uSGBs including 339MAGs that were not classified at the species level,
indicating the lack of microbial representation in the current GTDB
database. The top five uSGB classified genera were Collinsella (71
uSGBs with 143 MAGs), Streptococcus (33 uSGBs with 43 MAGs), Hae-
mophilus D (13 uSGBs with 17 MAGs), Veillonella (13 uSGBs with 14
MAGs), and Bifidobacterium (9 uSGBswith 16MAGs). Compared to the

Fig. 3 | A total of 2172 species-level clusters (SGBs) obtained from 32,277 early-
life MAGs. a Overlap of SGBs containing both MAGs and isolate reference gen-
omes. SGBs containingMAGs and reference genomes are denoted as cultured SGBs
(cSGBs), SGBs without reference genomes are denoted as uncultured SGBs
(uSGBs), and those exclusively containing reference genomes are denoted as non-
early-life SGBs. b The number of cSGBs and uSGBs as a function of the genome
number within each SGBs. The uncultured score is calculated as the proportion of

MAGs in the total genomes belonging to that SGB. c The phylogenetic tree of early-
life gut microbiome built with 2171 bacterial representative genomes of the ELGG
catalog. d The number of cultured taxa at different resolutions from 2172 repre-
sentative genomes. e The number of MAGs in each SGBs, and only the top 40most
represented SGBs were displayed. The clinical factor (i.e., delivery mode, gesta-
tional age, and age) related to the MAGs per species are plotted.

Article https://doi.org/10.1038/s41467-022-32805-z

Nature Communications |         (2022) 13:5139 5



UHGG collection that is mainly comprised of microbial genomes from
adults22, the phylum Firmicutes_A (705 SGBs with 7,765 MAGs in ELGG
catalog) took up the largest proportion of SGBs in both children and
adult gut microbiomes, followed by Firmicutes (390 SGBs, 7102
MAGs), Actinobacteriota (359 SGBs, 6188 MAGs), Proteobacteria (336
SGBs, 5409 MAGs), and Firmicutes_C (165 SGBs, 2,007 MAGs) (Sup-
plementary Fig. 3a). All these top five phyla in children gutmicrobiome
were represented by over 60% of uSGBs (Supplementary Fig. 3b).
When compared at higher taxonomic resolution, a distinct difference
was observed between children and adults gut microbiota. The MAGs
assembled from children gut microbiome mainly consisted of the
genus Streptococcus (164 SGBs, 2112 MAGs), Collinsella (129 SGBs, 534
MAGs), Veillonella (89 SGBs, 1501MAGs),HaemophilusD (78 SGBs, 418
MAGs), and Bifidobacterium (58 SGBs, 4,604 MAGs) (Supplementary
Fig. 3a); while the top genera from the UHGG catalog were Collinsella,
Prevotella, Streptococcus, Bacteroides, and Alistipes.

At species level, the most represented SGBs in the ELGG catalog
were Escherichia coli, Enterococcus faecalis, Bifidobacterium longum,
Staphylococcus epidermidis, and Bifidobacterium breve, which com-
pletely differed from the genomes of the UHGG catalog (Fig. 3e). We
further stratified the MAGs within each species according to delivery
mode [vaginal and cesarean section (C-section)], gestational age (full-
term and preterm) and the age of children at sampling. The MAGs
belonging to species E. faecalis, S. epidermidis, Clostridium spp., Veil-
lonella spp., Klebsiella spp., and Streptococcus vestibularis weremainly
reconstructed from children born by C-section and/or preterm chil-
dren. These species are potentially pathogenic and commonly asso-
ciated with the hospital environment4,31. The majority of these MAGs
were derived from fecal samples collected within the first year of life,
highlighting the specificity of the ELGG catalog for the early-life gut
microbiome. Notably, some MAGs were not reconstructed from the
first few months after birth, but obtained at a later time, such as
Anaerostipes hadrus and Ruminococcus_E bromli_B.

Rarefaction analysis of the total number of SGBs as a function of
the number ofMAGs indicated that the species from the ELGG catalog
has not approached saturation, highlighting that more species remain
to be discovered in the gut microbiome of children (Supplementary
Fig. 3c). However, in line with the rarefaction analysis based on gen-
omes from the UHGG catalog22, this unsaturated status was mainly
attributed to rare members of the gut microbiota, as there were 1206
SGBs with only one MAG from the ELGG catalog (Supplementary
Fig. 3d). When only considering SGBs containing at least two con-
specific MAGs, the number of species was much closer to saturation
(Supplementary Fig. 3c).When looking into the geographic prevalence
of SGBs in each continent (i.e., Asia, Europe, North America, and
Oceania), the most prevalent species worldwide included E. coli, B.
longum, and E. faecalis (Supplementary Fig. 4). Meanwhile, there were
a number of SGBs with various rates of prevalence in each continent.
For example, species of Clostridium spp., Klebsiella michiganensis,
Citrobacter freundii, and Clostridioides difficile were more prevalent in
the samples of North America, which may be attributable to the high
proportion (77%) of fecal samples collected from preterm children.

Comparison of SGBs across studies with the samemetagenomic
datasets
To investigate the reproducibility of SGBs from the ELGG catalog, we
clustered the subset of MAGs with >50% genome completeness and
<5% contamination and free of chimerism from a common set of 941
metagenomes from Bäckhed et al.32 and Vatanen et al.33 that were
available in another twoprevious humangutMAGstudies (i.e., Nayfach
et al.13 and Pasolli et al.15) (Supplementary Data 4). Different assembly
and binning approaches were applied in the three studies, i.e., Pasolli
et al. assembled and binned withmetaSPAdes andMetaBAT2; Nayfach
et al. used MegaHIT and a combination of MaxBin2, MetaBAT2, CON-
COCT and DAS Tool for assembling, binning and refinement. We

observed that the pattern ofMAGnumber produced fromeach sample
was consistent across the three studies, but a slight increase (Wilcoxon
test, p < 0.01) in the total number of MAGs was observed with our
pipeline (n = 5203) compared to Nayfach et al. (n = 4284) and Pasolli
et al. (n = 4728), respectively (Supplementary Fig. 5a). By calculating
the proportion of shared SGBs on a per-sample basis with one other
study (referred to as SGBs similarity, Methods), the median of SGBs
similarity of the current study compared to the other two previous
studies reached 100% for both Nayfach et al., and Pasolli et al. (Sup-
plementary Fig. 5b). In addition, conspecificMAGs reconstructed from
the same samples by different studies had a median ANI and AF of
99.9% and93.9%, respectively (95.0%AFwith near-completeMAGs and
85.3% AF with medium-quality MAGs; Supplementary Fig. 5c). These
results suggest a high reproducibility of popular assembly and binning
tools used in large-scale genome reconstructions, in line with previous
comparisons22.

Enlargement of the pan-genomes of key Bifidobacterium spp.
early in life
Bifidobacterium represents the dominant genus in the gut microbiota
of children and is known as the pioneering microbial member that
influences microbiota succession and the capability of the host to
utilize prebiotic HMOs early in life. A depletion of Bifidobacterium or
their genes for the utilization of HMOs has recently been indicated to
be involved in host systemic inflammation and immune imbalance34.
Based on the GTDB annotation, we greatly expanded the diversity of
Bifidobacterium intraspecies diversity by a range of 4 (B. longum) to 12
(Bifidobacterium kashiwanohense) times compared to the reference
genomes belonging to the top eight Bifidobacterium SGBs that con-
tained more than 100 MAGs. The largest SGB is B. longum with 296
reference genomes and 1306 added MAGs, followed by B. breve (107
reference genomes; 830MAGs), Bifidobacterium bifidum (91 reference
genomes; 823 MAGs), and Bifidobacterium pseudocatenulatum (77
reference genomes; 446MAGs) (Fig. 4a). The pan-genome of each SGB
is defined as the sum of the genes including core and accessory genes
of all the genomeswithin that SGB35. The ELGG increased the size of the
pan-genome per species up to a range of 5385 (Bifidobacterium den-
tium with 2337 exclusively fromMAGs) to 10,759 (B. longum with 3522
exclusively from MAGs) that were higher than the reference genomes
(Fig. 4b). This may indicate the large proportion of bifidobacterial
metabolic functions that have not been uncovered based on current
culturing approaches. By quantifying the abundance of these genomes
in the metagenomic samples, we found that the relative abundance of
bifidobacterial species decreased as children aged frombirth to 3 years
old (Fig. 4d). In addition, we found a lower level of strain heterogeneity
in samples from early life (first 6 months), which may reflect the rela-
tively simple dietary components (e.g., breastfeeding) in this period.

Next, we functionally annotated the pan-genomes of each Bifido-
bacterium species by mapping them against the broad range of data-
bases including COGs, KEGG, GOs, ECs, and CAZy, and found that a
proportion of genes between 30.9% (for B. dentium) and 39.2% (for
Bifidobacteriumadolescentis) lacked amatch to anydatabase.Whenwe
stratified the genes as core and accessory, the majority of unmatched
genes were accessory (only a proportion of 56.0–64.6% genes mat-
ched), and over 92% of core genes were annotated (Fig. 4c). According
to COG categories, the replication/recombination/repair, carbohy-
drate transport and metabolism, transcription, and amino acid trans-
port and metabolism were the most prevalent known functions
(Supplementary Fig. 6a). In addition, a total of 271 KEGGmodules were
encoded by the eight bifidobacterial species present in the ELGG
(Supplementary Fig. 6b; Supplementary Data 5), with the main func-
tions relating tomultiple sugar transport system (M00207), ribosomal
structure (M00178), putative ABC transport system (M00258), and
raffinose/stachyose/melibiose transport system (M00196), reflecting
their high capabilities of carbohydrate metabolism.
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As the main microbial degraders of carbohydrates in the gastro-
intestinal tract early in life, we further profiled the glycobiome of
bifidobacterial species basedon theCAZyprofiles (Fig. 4f). A total of 26
glycoside hydrolases (GH), 7 glycosyl transferases (GT), two
carbohydrate-bindingmodules (CBM), and one carbohydrate esterase
(CE) were observed across eight bifidobacterial species including
reference genomes and MAGs. Notably, GH13 (followed by GT2, GT4,
GH3, and GH31) were the most prevalent CAZy families within the
bifidobacterial glycobiome, which has been proven to have the capa-
city to break down a wide range of carbohydrates dominant in the

diet30. Compared to reference genomes, MAGs in the ELGG were
annotated with higher and/or distinct gene families involved in car-
bohydratemetabolism. For instance, theMAGs fromB. bifidum contain
27 CAZy families, 10 of which were not found in reference isolate
genomes. The CAZy families present in MAGs but absent from refer-
ence isolate genomes included GH3, GH5, GH9, GH43, GH127, GH38,
CE10, GH8, CBM6, and GH94. Considering breastfeeding during
infancy, we further explored the functional potential of the MAGs in
terms of HMO utilization by investigating the presence of gene cluster
described as involved in HMO transport and degradation in B. infantis
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Fig. 4 | Characterization of key early-life Bifidobacterium spp. from ELGG cat-
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functional annotation across databases of COGs, KEGG, GOs, ECs, and CAZy for
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(ATCC 15967). MAGs from B. longum subspecies clade, B. infantis,
carried a high number of HMOhomologs, (236 out of 261MAGs had at
least 15 homologs, accounting for 50% of the HMO gene cluster)
(Fig. 4e), while only two MAGs from B. longum carried gene cluster
related to HMO metabolism, indicating the distinct capacity in HMO
utilization of bifidobacterial species. When comparing the relative
abundance of B. infantis with other B. longum genomes, a higher
(Wilcoxon test,p <0.0001) abundance ofB. infantiswasobserved in all
continents except for Oceania (Supplementary Fig. 6c), indicating the
competitive advantage of B. infantis strains in early life that may be
conferred by the presence of HMO gene cluster.

Over 80% of early-life gut metagenomic sequences represented
in the ELGG
To assess how representative the ELGG is as a genomic reference for
metagenomes from the human gut in early life, we compared the
mapping rate of 353 child fecal samples aged within the first 3 years
against the ELGG catalog and another two large-scale reference col-
lections, i.e., CIBIO (n = 4930)15 and UHGG (n = 4644)22. Using Bowtie2,
we obtained a median mapping rate of 82.8% (IQR = 72.7–88.8%) with
the ELGG catalog. This level of classification was higher than that
obtained with the CIBIO and UHGG catalogs [69.5% (IQR = 61.1–76.4%)
and 71.2% (IQR = 62.1–77.8%) respectively; Wilcoxon test, p <0.0001]
(Supplementary Fig. 7a; Supplementary Data 6). Additional evidence
to support the specificity of the ELGG for classification of the early-life
gut microbiome was the slightly lower mapping rate [a median of
66.7% (IQR = 60.2–73.2%, ELGG) compared to 72.1% (IQR = 69.2–75.0%,
CIBIO) and73.2% (IQR = 69.5–75.5%,UHGG);Wilcoxon test,p <0.0001]
when aligning metagenomic sequencing reads from the adult fecal
samples (n = 510) against each catalog (Supplementary Fig. 7b; Sup-
plementary Data 6).

Conspecific genomic diversity associated with delivery mode
Children bornbyC-sectiondisplay a significantly distinct gutmicrobial
acquisition and development in the first few years compared to chil-
dren born vaginally4,6, and several studies have attempted to restore
the gut microbiota by probiotic supplements36, vaginal swabbing37, or
fecal microbiota transplantation38 due to this disordered microbiome
being positively linked with various diseases later in life39. We, there-
fore, leveraged the ELGG catalog together with the available metadata
to address the taxonomic and functional differences associated with
C-section at a genome level. A total of 18,836 and 13,412 MAGs were
obtained from vaginally (n = 3299 samples) and C-section
(n = 2612 samples) born children, respectively, with 1 to 38 MAGs per
sample (mean ± SD: 5.71 ± 4.18) for the former and 1 to 27 MAGs per
sample for the latter (5.13 ± 3.37) (Wilcoxon test, p <0.0001). When
adjusting by the sequencing depth, the number of MAGs per million
paired reads differed (0.32 ± 0.35 for vaginal and 0.37 ± 0.24 for C-
section; Wilcoxon test, p <0.001) (Supplementary Fig. 8a). The
majority of MAGs for either delivery mode were annotated as phyla of
Firmicutes/_A/_C, Actinobacteriota, Proteobacteria, Bacteroidota, and
Verrucomicrobiota (Supplementary Fig. 8b). When stratified by chil-
dren’s age, the prevalence of the genera Bacteroides/Phocaeicola and
Parabacteroides belonging to the Bacteroidota phylum present in
C-section born children were at lower levels (Wilcoxon test blocked by
children age, p <0.05), while the genera Veillonella and Klebsiellawere
higher (Wilcoxon test blockedby children age,p =0.035 andp = 0.056,
respectively) than those born vaginally, in particular in the first few
months of life (Fig. 5a). This observation confirms and expands the
previous results obtained with the read-based analysis4,40.

Beyond the observed differential taxa, the reconstructed gen-
omes enabled us to explore the intraspecies genetic and genomic
diversity of the gutmicrobiome associated with deliverymode in early
life. Only SGBs with at least 10 conspecific near-complete genomes
(>90% completeness and <5% contamination) from both vaginal and

C-section born children were considered in this part of the analysis. A
total of 116 species were retained, covering the phyla Firmicutes/_A/_C
(n = 30/34/7), Proteobacteria (n = 20), Actinobacteriota (n = 16), Bac-
teroidota (n = 7), and Verrucomicrobiota (n = 2), totaling 20,816 gen-
omes (82% of all near-complete genomes of ELGG) (Supplementary
Data 7). When looking into the intraspecies genomic diversity, the
average pairwise genetic distances of core genes for each SGB was
below 5% (typically used as a threshold to define bacterial species)
(Supplementary Data 7). When setting the threshold of ANI at a higher
level based on whole genomes, a number of subspecies from 1 to 88
and a range of 2 to 596 were obtained at a cutoff of 97% and 99%,
respectively, suggesting the existence of diverse subspecies popula-
tions (Supplementary Data 7). We further sought to determine to what
extent delivery mode contributed to these variances. The intraspecies
variation within the core genomes of 46 species, and the genomic
distances (based on gene presence/absence) of 64 species were sig-
nificantly (PERMANOVA, FDR <0.05) influenced by deliverymodewith
effect size up to 18.4% and 17.3%, respectively (Fig. 5b; Supplementary
Fig. 8c). Notably, Streptococcus agalactiae also known as group B
streptococci was highly sensitive to genetically associate with
delivery mode.

The pan-genome size of the 116 species here analyzed ranged
from 1788 (Negativicoccus succinicivorans, n = 58 genomes) to 25,698
(Phocaeicola dorei, n = 677 genomes) (Supplementary Data 7). A total
of 31,976 unique genes across 116 species were observed with varying
levels of prevalence among genomes from children born vaginally or
via C-section. Functions encoded by the genes prevalent (>70%) in
C-section born children but not children born vaginally (<30%) were
mainly involved in carbohydrate transport/metabolism, cell motility,
transcription, and cell wall/membrane/envelope biogenesis (Fig. 5c).
Themajority of differentially prevalent genes were not related toHMO
degradation and utilization as only 4738 unique genes (out of 31,976)
were matched with a HMO gene cluster from strain B. infantis
ATCC 15697.

Mothers who give birth by C-section usually undergo antibiotic
treatment, which may result in different antibiotic resistance profiles
reflected in the gut microbiome of children. We thus functionally
annotated the genomes with antibiotic resistance genes (ARGs) based
on the Comprehensive Antibiotic Resistance Database (CARD). The
average ARG richness per genome from C-section born children was
higher (Wilcoxon test, p < 0.0001) than that of vaginally born children
(11.6 vs. 10.0 type of ARGs), however, both distributions of ARG rich-
ness of genomes from either delivery mode were clearly trimodal
(Fig. 5d), with a larger peak at only one ARG, and the other two smaller
peaks at 31 and 50 genes, respectively. The origins of ARGswithin each
peak differed among children born by different delivery modes. In the
second peak, genera Klebsiella, Enterobacter, and Citrobacterwere the
main contributors in children born by C-section; while the third peak
was mainly contributed by E. coli that was more prevalent in vaginally
born children. Apart from E. coli, 73 MAGs from Pseudomonas aerugi-
nosawere found to carry higher (Wilcoxon test,p <0.0001) richnessof
ARGs (58.8 ± 1.38) than E. coli (50.2 ± 2.27). Among these 73 MAGs, 68
were reconstructed from preterm children within the first 6 months
(62 genomes within the first month). As children aged, the richness of
ARGs in the gut microbiome generally decreased, from an average of
42.6 at onemonth to 6.8 ARGs at over 36months old (Fig. 5e). Notably,
the richness of ARGs present in the gut microbiomes of children born
by C-section was overall higher than that of vaginally born children (an
average of 36.9 vs. 32.5 AGRs; Wilcoxon test, p <0.0001). When com-
paring the genomes within the same species from children born dif-
ferently in terms of ARG richness, 15 species showed differential ARG
richness, and 12 species contained higher numbers (Wilcoxon test,
p <0.05) of ARGs in C-section born children than those born vaginally,
while three species (Pauljensenia radingae_A, Clostridium para-
putrificum, and Clostridium_P perfringens) exhibited opposite patterns
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(Supplementary Fig. 8d). Themost commonmechanisms of antibiotic
resistance discovered in the 20,816 genomes included antibiotic
efflux, antibiotic target alteration, and antibiotic inactivation (Sup-
plementary Fig. 8e).

Comparisons of gut microbiome between children and adults
The comprehensive catalog of the early-life microbiome enabled us to
explore the taxonomic and functional differences between the chil-
dren and adult gut microbiomes at a genome level. We thus compared
the fivemost represented genera in children (≤3 years) and adults (≥18

years) (i.e., Alistipes, Bacteroides, Bifidobacterium, Prevotella, Strepto-
coccus, Veillonella) based on ELGG and UHGG catalogs22, totaling
12 species with >60 near-complete genomes (>90% completeness and
<5% contamination). The pan-genome size was positively associated
with thenumber of includedgenomes, but noneof the species reached
a plateau, even Bacteroides uniformis with the highest number of
genomes (n = 1087) containing 32,215 genes in adults. Species of
Streptococcus thermophilus had the lowest pan-genome size with 2572
for adults and 2639 for children from 143 and 136 genomes, respec-
tively (Fig. 6a). This suggests additional genomes from each species
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remain to be discovered across populations. In the genus Bacteroides,
genomes from adults contained a higher number of unique genes than
those from children when considering the same number of genomes
(Wilcoxon test, FDR <0.05). In contrast, gene numbers of Alistipes
onderdonkii, B. adolescentis, B. longum, B. pseudocatenulatum, and
Streptococcus salivarius were higher (Wilcoxon test, FDR <0.05) in
children (Fig. 6b; Supplementary Fig. 9).

Notably, when looking into gene diversity (estimated by the Jac-
card distance based on the presence/absence of genes per genome),
genomes from adults showed higher (Wilcoxon test, FDR <0.05) gene
diversity on average than that of children for 5 out of 12 species,
including Bacteroides fragilis, Bacteroides ovatus, B. bifidum, S. sali-
varius, and S. thermophilus (Supplementary Fig. 10a). These results
indicate that genomes within these species in early life are more con-
served, and more specific genes are acquired by the microorganisms
later in life. On the contrary, the enriched species B. longum showed
higher (FDR <0.05) gene diversity than that of adults. We also
explored the effect size and significance of age (≤3 years for children
and ≥18 years for adults) on the gene diversity of each species. The
results showed the distinct contribution of age (PERMANOVA, FDR <

0.05) to the genetic variation of species between children and adults.
S. salivarius (R2 = 0.047 for hamming distance and R2 = 0.037 for Jac-
card distance), B. pseudocatenulatum (R2 = 0.032; R2 = 0.039), and S.
thermophilus (R2 = 0.027; R2 = 0.040) were the species most sig-
nificantly associated with age (Fig. 6c).

Based on themultiple functional annotation schemes as ELGP, the
pan-genome of species showed comparable rates of gene annotations
between children and adults, but differed across species, namely, B.
adolescentis with the lowest rates of 62.4% and 64.6% for children and
adults respectively, and S. thermophilus with the highest respective
rates of 84.6% and 85.3% for children and adults (Supplementary
Fig. 10b). Based on theCAZy annotation of the pan-genomes, we found
that gut microorganisms from children harbored a higher (Wilcoxon
test, FDR<0.05) number of specific CAZy families,most notably GH13,
GT4, GT2, GH43, and GH3 (Supplementary Fig. 10c). Additionally, we
sought to determine the functions that were unique to either children
or adults. We found a large number of EC families among species
(n = 1–38 in children and 0–57 in adults), KEGG modules (n =0–23 in
children and0–13 in adults), CAZy families (n =0–4 in children and0–7
in adults), COGs (n = 0–1 for both children and adults) and GOs
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Fig. 6 | Comparisons of gutmicrobiomebetween children and adults. aNumber
of genomes (bar plot) and pan-genome size of each species from children and
adults. b Pan-genome plot represented by the accumulated number of genes
against the number of genomes of B. ovatus and B. pesudocatenulatum stratified by
children and adults (two-tailed Wilcoxon test, *FDR <0.05). c The explained
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categories (n = 8–61 in children and0–57 adults) tobe specific to either
children or adults (Fig. 6d; Supplementary Data 8). Within EC families
of B. bifidum, the enzymes of GlfT2 (EC 2.4.1.288; n = 27 genomes),
asparagine synthase (EC 6.3.5.4; 17 genomes), and D-xylulose reduc-
tase (EC 1.1.1.9; 12 genomes) were the most prevalent in children; and
the top families of CAZy from children included GH127 (5 genomes),
GH94 (4 genomes), and CBM6 (1 genomes). Within EC families of B.
uniformis, the enzymes of dTDP-6-deoxy-L-talose 4-dehydrogenase
(EC 1.1.1.34; 13 genomes), thiamine kinase (EC 2.7.1.89; 13 genomes),
and histidine decarboxylase (EC 4.1.1.22; 13 genomes) were the most
prevalent in adults; and the top families of CAZy from adults included
PL4 (7 genomes), PL11 (3 genomes), AA10 (2 genomes), and CBM73 (2
genomes).

Discussion
We provide a large-scale sequence resource of the human gut micro-
biome in early life, representing 32,277 newly reconstructed genomes
and over 80 million protein sequences, and spanning multiple clinical
factors including age, delivery mode, gestational age, and feeding
patterns with significant influences on the early-life gut
microbiome4,7,19,32. The ELGG catalog considerably expands the phy-
logenetic diversity of the early-life gut microbiome by increasing the
classification rate of metagenomic sequencing reads (over 82%) and
uncovering genomes without a cultured representative. Although the
gut microbiome community is relatively simple in early life compared
to adults, over 64% of the 2172 species-level clusters from ELGG lack a
cultured representative, suggesting the importance and need to
experimentally isolate and characterize the gut microbiome from
children. Having this ELGG catalog can serve as a reference for future
studies specifically for early-life gut microbiome research and help
prioritize targets for experimental isolation and cultivation. Char-
acterizing newly isolate strains from children may aid in the develop-
ment of dietary supplements to help restore the gut microbiome
composition perturbed by extrinsic or intrinsic factors, such as
C-section delivery and antibiotic intervention.

With the establishment of the ELGG catalog, the strain dynamics,
pan-genome and genomic diversity of the main Bifidobacterium spe-
cies from the human gut in early life have been investigated at a gen-
ome level. The pan-genome of these bifidobacterial species has been
greatly expanded by up to 12 times in comparison to the reference
genomes only, substantially contributing to the genomic landscape of
bifidobacterial species.However, nearly 40%of thepan-genomeacross
bifidobacterial species remains uncharacterized functionally. Given
significant influences of delivery mode on the development of the
early-life gut microbiome, we further compared the gut microbiome
from children born by C-section or vaginally at multiple levels of
resolution and identified a set of species and genomic variations linked
todeliverymode. Notably, the richness of ARGs gradually decreased as
children aged, and microbial genomes from C-section-born children
carried higher ARGs than that from children born vaginally. We spec-
ulate this pattern could be related either with the antibiotic treatment
typically administered to mothers undergoing C-sections or with
antibiotic interventions in children after birth. Moving from early life
to adulthood, it has been known that along with changes in diet,
physiological functions, and the immune system, the gut microbiome
gradually approachesmaturity as children grow3,19. Consistent with the
initial hypothesis of the existence of age-specific microbial commu-
nities with distinct genomic and functional patterns18,32, we found that
somemicrobial genomes from adults possessed higher gene diversity,
suggesting that gut microorganisms in adults gain unique genes later
in life. The genomes fromeither children or adults showed comparable
rates of functional annotations across species, however, the most
prevalent functions differed between children and adults, highlighting
the importance of developing age-specific reference genomes tar-
geted at particular populations.

Currently, linkages between the early-life human gut microbiome
and health have been well recognized, and enhanced resolution and
accuracy of taxonomic classification and microbial genomic adapta-
tion will require more culture-based and bioinformatic work targeting
specific periods of life or clinical contexts. Our newly reconstructed
genomes represent a key step for the early-life human gutmicrobiome
and provide new insights into the taxonomic, functional and genomic
diversity of this period of life. The establishment of ELGG and ELGP
catalogs will substantially improve our ability to understand the
development and mechanisms of disturbances of the early-life gut
microbiome. Our knowledge of the human gut microbiome compo-
sition and function in early life will have a profound impact on pro-
moting or maintaining human health throughout the course of life.

Methods
Publicly available early-life gut metagenomic datasets and
quality control
A total of 6122 paired-end sequencing runs collected by 26 studies for
early-life gut metagenomes were downloaded from the NCBI SRA
according to the accession numbers published in each included study.
FASTQ files were retrieved by using fastq-dump v2.9.1 with the option
“-split-3” from SRA Toolkit v2.9.1. These samples were distributed
among 11 countries across four continents, with the United States,
UnitedKingdom, andNewZealandbeing the top three represented. All
metagenomic sequencing data were quality controlled and human
contamination (hg19 human reference genome) was filtered by using
KneadData v0.7.2 with default parameters, resulting in 1.3 × 1011 paired
reads (87% of the raw sequencing reads).

Metagenomic assembly and contig binning
The quality-filtered sequencing reads from each of 6122metagenomes
were assembled using MegaHIT v1.1.341 with option “-min-contig-len
1000”, which resulted in 29,912,553 contigs, with a total length of
1.71 × 1011bp, and an average of N50 of 46,532 bp, calculated with the
“stats.sh” script (format = 5) from BBMap v38.22 (https://sourceforge.
net/projects/bbmap/). Depth of coverage of each contig was calcu-
lated by mapping the raw reads back to their assemblies using BWA-
MEM v0.7.1742 with default options and then calculating the corre-
sponding contig depth with SAMtools v1.10 and jgi_summar-
ize_bam_contig_depths function fromMetaBATv2.12.123. The gutMAGs
from children were generated per sequencing run using three meta-
genomic binning tools (MetaBAT v2.12.1, MaxBin v2.2.624, and CON-
COCT v1.0.025) using metaWRAP v1.3.126 with default parameters. The
minimal contig size for binning was set as default with 1000bp for
further processing, except for MetaBAT2, which required at least
1500 bp. Afterwards, the produced bins from each binning tool were
integrated and refinedwith Bin_refinementmodule ofmetaWRAPwith
options “-c 50 -x 10”, corresponding to the criterion ofmedium-quality
draft MAGs27. The quality (estimated completeness and contamina-
tion) of bins was evaluated with CheckM v1.0.12 lineage workflow43,
implemented in metaWRAP with option “-quick”. In order to control
the genome quality strictly, the resulting 42,054 MAGs were checked
by GUNC v1.0.528 to filter genomes potentially containing chimerism
based on ‘pass.GUNC’ in the output file. The genome quality score was
calculated as: completeness–5 × contamination. The ribosomal RNA
(rRNA) geneswere searched using Barrnap v0.944 with options “--reject
0.01 --evalue 1e-03”, and transfer RNAs (tRNAs) of the standard 20
amino acids were identifiedwith tRNAScan-SE v2.0.645 with options “-A
-Q” for archaeal species and “-B -Q” for species belonging to bacterial
lineages based on the annotation of GTDB.

Assessing the strain heterogeneity of MAGs
The CMSeq tool v1.0.3 was used to investigate the strain-level het-
erogeneity within each MAG15. Firstly, metagenomic reads from each
sample used to generate MAGs were aligned to the assembled contigs
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using BWA-MEM, and the aligned files were sorted and indexed with
SAMtools. Secondly, the protein-coding genes of the assembled con-
tigs were predicted with Prodigal v2.6.3 implemented in the Prokka
v1.14.6 with the default settings, and the resulting GFF file was used for
subsequent analysis. Finally, the “polymut.py” script from the CMSeq
packagewasused to detect the nonsynonymousmutations from those
positions mapped with the PHRED quality score of at least 30 and a
depth of coverage of at least 10x. A position was considered non-
polymorphic if the dominant allele frequency was >80%. The level of
strain heterogeneity of eachMAG was calculated by the proportion of
the total number of nonsynonymous mutations in the total number of
considered positions.

Reference genomes from public databases
The NCBI RefSeq database (accessed on 25th September 2020) that
contains bacterial genomes and archaeal genomes were downloaded
(https://ftp.ncbi.nlm.nih.gov/genomes/refseq/). In addition, the isolate
genomes from the HumanGastrointestinal Bacteria Culture Collection
(HBC, http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_
sets/hbc_genomes.tar.gz)11, and Culturable Genome Reference
(CGR)12were also gathered. The completeness and contaminationof all
reference genomes were evaluated using CheckM lineage workflow
with default settings. The genomes not having >50% completeness,
<5% contamination, genome quality score <50, and failing to pass the
chimerismdetection by GUNCwere then discarded, resulting in a total
of 187,555 reference genomes including 184,392 bacterial genomes
and 1039 archaeal genomes fromRefSeq, 699 genomes fromHBC, and
1425 genomes from CGR.

Species-level clustering of reconstructed MAGs and reference
genomes
The total set of 219,832 genomes (32,277 MAGs and 187,555 reference
genomes) were clustered at an estimated species level (ANI ≥ 95%;
refereed as SGBs)22 using dRep v2.6.246 with the following options: “-pa
0.9 -sa 0.95 -nc 0.30 -cm larger, -S_algorithm fastANI v1.33”. In order to
increase the computational efficiency to cluster the complete genome
set, an iterative approachwas appliedwhere randomchunks of 30,000
genomes were clustered independently, and then the selected repre-
sentatives per cluster from each chunk were combined and subse-
quently clustered22. The genome with the higher score calculated
based on the following formula was selected as the species repre-
sentative in each iteration:

Score=CMP� 5 ×CNT+0:5 × log10ðN50Þ

where CMP and CNT represent the estimated completeness and con-
tamination, respectively; and N50 is the minimum contig length in
which 50% of the total genome is covered. In case of clusters that
contained reference genomes andMAGs, the reference genomes were
prioritized over MAGs and selected as the representative.

In addition, the pairwise distances for all conspecific genomes
were calculated by using Mash v2.347 with default sketch size. After-
wards, the phylogenetic tree of each species was built with the “com-
plete” hierarchical clustering method from ‘fastcluster’ R package48,
and then the number of sub-clusters were further obtained by setting a
distance cutoff of 0.03 (97% ANI) and 0.01 (99% ANI) to investigate the
within-species population diversity. The pairwise genome distances
between 2172 representatives of ELGG and 4644 representatives of
UHGG were calculated by Mash with default sketch size.

The obtained SGBs were subdivided into 3 groups: (i) cultured
SGBs (cSGBs) containing at least one MAG and one reference genome
(the uncultured score for a SGB was calculated as the proportion of
MAGs in the total genomes belonging to that SGB); (ii) uncultured
SGBs (uSGBs) containing exclusively MAGs; (iii) non-early-life SGBs
that contained exclusively reference genomes.

Evaluation of MAGs reconstrued across metagenomic datasets
TheMAGs reconstructed fromacommon set of 941metagenomes that
contained MAGs with >50% completeness and <5% contamination and
without chimerism detection by GUNC from the current and two
previous human gut MAG studies13,15 were compared in terms of
genomic and taxonomic features. The genome quality (completeness
and contamination) from another two studies were re-estimated with
CheckM lineageworkflowwith “-reduced_tree”43 in linewith the option
“-quick” in metaWRAP and GUNC for chimerism detection. The resul-
ted genomes were clustered to SGBs using dRep with “-pa 0.9 -sa 0.95
-nc 0.30 -cm larger, -S_algorithm fastANI”. The similarity of SGBs of the
same sample but in different studies was calculated as the percentage
of shared SGBs in the smaller SGBs of the two studies. Conspecific
genomes recovered in the samemetagenomic samples but in different
studies were also compared with the alignment fraction (AF) and ANI
that were obtained from the output of dRep. Both the maximum AF
and ANI for each pairwise comparison were considered.

Taxonomic annotation and phylogenetic analysis
Taxonomic annotation of each species representative was performed
with GTDB-Tk v2.1.0 (reference database version R207) with “classi-
fy_wf” workflow using default parameters49,50. The NCBI taxonomy
annotation was also generated for each species representative using
the “gtdb_to_ncbi_majority_vote.py” script available in the GTDB-Tk
repository.

The phylogenetic tree of 2171 bacterial representative genomes of
SGBs was built using FastTree v2.1.1151 with default settings using the
protein sequence alignments generated by GTDB-Tk.

To estimate the increase in phylogenetic diversity (PD) con-
tributed by the ELGG catalog, we computed the sum of branch length
of the whole bacterial trees (PDall) and the sum of branch length from
773 cSGBs (PDcSGBs) implemented through the function ‘pd’ in the
“picante”package52. The percentage gain in PD contributed exclusively
by uSGBs was calculated as: 100 × (PDall − PDcSGBs)/ PDcSGBs.

Metagenomic read mapping
An additional number of 353 metagenomes with >50,000 sequencing
paired reads that were randomly selected from child fecal samples but
not used to generate ELGG or ELGP catologs (Supplementary Data 6)
from five studies as cross-validation samples were retrieved fromNCBI
SRAwith SRAToolkit v2.11.2. Thesemetagenomeswerequality-filtered
and host decontaminated (hg19 human reference genome) using
KneadData with default parameters. Apart from the database recon-
structed in the current study (ELGG, n = 2172), we built another two
databases based on the representative genomes of ref. 15 (CIBIO,
n = 4930) and the UHGG22 (n = 4644) with Bowtie2 v2.4.553. Moreover,
510 metagenomes from adult fecal samples with >50,000 sequencing
paired reads from five studies were downloaded from NCBI SRA
v2.11.2. All downloaded metagenomes were aligned to these three
databases respectively using Bowtie2 in “end-to-end” mode with the
option “--very-sensitive”, and the generatedmapping files were further
filtered by removing alignments with an alignment score (AS:i tag) less
than −20 thatwere likely to be spurious alignments in order to increase
the reliability of mapping assessment.

Comparisons between early-life and adult gut microbiome
The UHGGcollection was used for analysing assembled genomes from
adults (≥18 years), mostly comprising non-redundant genomes from
three large-scale human gut studies13,15,54. The age information was
retrieved from each of the three studies. The species from the five
most prevalent genera in either the UHGG or the ELGG catalog and
containing >60 genomes (>90% completeness and <5%contamination,
as well as free of chimerism detected by GUNC) were selected for
downstream analyses. The quality and the taxonomic annotation of
genomes from UHGG was re-estimated with CheckM and GTDB-Tk,
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respectively, as performed for the ELGG. Finally, 12 species were
retained for further analysis, i.e., A. onderdonkii (ELGG vs. UHGG: 82 vs.
725 MAGs), Bacteroides caccae (61 vs. 64 MAGs), B. fragilis (322 vs. 96
MAGs), B. ovatus (136 vs. 148MAGs), Bacteroides thetaiotaomicron (80
vs. 63 MAGs), B. uniformis (330 vs. 1087MAGs), B. adolescentis (213 vs.
569 MAGs), B. bifidum (629 vs. 162 MAGs), B. longum (969 vs. 559
MAGs), B. pseudocatenulatum (349 vs. 176 MAGs), S. salivarius (457 vs.
88 MAGs), S. thermophilus (136 vs. 143 MAGs). The corresponding
genomes were then downloaded from the MGnify FTP site (http://ftp.
ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/).

Gene diversity, pan-genome analysis and functional annotations
Protein clusters. The protein-coding sequences (CDS) of genomes
were predicted and annotated with Prokka, which employed Prodigal
with options “-c” (protein predictions with closed ends only), “-m” and
“-p single”. The4,036,936nonredundant ELGP clusterswere generated
from the set of 86,678,654 genes of 32,277 genomes by using CD-HIT
v4.8.155 at 95% protein identity (-c 0.95 -n 5 -M0 -d0 -g 1). Comparisons
between ELGP and UHGP were conducted by clustering the 4,036,936
nonredundant ELGP and 20,239,340 UHGP-95 clusters with CD-HIT at
95% protein identity.

Pan-genome analysis. The pan-genome of each species was analysed
by Panaroo v1.2.1056 with parameters “-c 0.90” for a minimum amino-
acid identity of 90% for a positivematch, “--core_threshold 0.90” and a
family threshold (-f) of 50%, as well as option “--clean-mode strict” and
“--merge_paralogs”by taking theGFF3files createdby Prokka. The core
genes were defined as present in at least 90% of genomes. A single
representative nucleotide sequence fromeachof the clusters was then
annotated functionally by eggNOG-mapper v2.1.7 with database
v5.0.257,58. The COG59, KEGG module, CAZy, GO, and EC annotations
were derived from the eggNOG-mapper results.

Antimicrobial resistance genes. Predicted genes (the representative
nucleotide sequence from each of clusters producd by Panaroo) were
annotated with The Comprehensive Antibiotic Resistance Database
(CARD v3.2.3) by using its accompanying Resistance Gene Identifier
(RGI, v5.2.0) with default parameters60, and only “Strict” and “Perfect”
hits from RGI were retained for further analysis.

HMO gene homology analysis. The protein sequences of HMO gene
cluster were obtained from strain Bifidobacterium longum
subsp. infantis ATCC 15697 (GCF_000020425.1; BLON_RS12070-
BLON_RS12215) from NCBI RefSeq database. Prediction of HMO gene
cluster was performed by comparing the HMO protein sequences to
the representative nucleotide sequence of each cluster in the pan-
genome of a species from Panaroo using a tBLASTn v2.9.0 search.
Specifically, identified hits were further filtered with identify percen-
tage≥70%ande-value <1e-10, andonly thebesthit per gene clusterwas
chosen.

Statistical analysis
When evaluating the dynamics of microbial features, we stratified the
continuous age of children into nine categories, namely 0 month
(0−1 day, n = 326), 1 month (2−30 days, n = 2640), 3 months
(31−90 days, n = 896), 6 months (91−180 days, n = 424), 12 months
(181−360days, n = 942), 18months (361−540days,n = 390), 24months
(541−720 days, n = 309), 30 months (721−900 days, n = 76), and
36 months (900−1,162 days, n = 44).

Statistical significance was verified through Wilcoxon test either
with or without a block factor if mentioned in the text implemented in
the R package “coin” v1.3-161. The produced p-values were adjusted for
multiple testing using theBenjamini–Hochberg false-discovery rate (of
5%, FDR) as reported in the text. The proportion of explained variance
(R2) and significance of each clinical covariate was quantified by

PERMANOVA calculated based on hamming distance of core genes or
Jaccard distance of presence/absence of genes per genome, as
implemented in the adonis2 function from R package “vegan” v2.5-762

with 1000 permutations. Genomes with missing metadata for the
given covariate were excluded.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 32,277 genome assemblies, 2172 representatives of ELGG, and
protein catalog of ELGP reported in this paper have been deposited in
the Zenodo repository under https://doi.org/10.5281/zenodo.
6969520. The other data supporting the findings of this study are
available within the paper and additional files. Source data are pro-
vided with this paper.

Code availability
All mentioned tools used for the data analysis in this study are publicly
available, and the version and parameters used have been indicated.
No custom code or pipeline was generated in this manuscript.
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